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1.

In this paper we shall concentrate on some of the computational issues

which arise in studying the robust stability of linear systems. Insofar

as possible, we shall use notation consistent with Stein's paper [1] and

we shall make frequent reference to that work.

As we saw in [1] a basic stability question for a linear time-invariant

system with transfer matrix G(s) is the following: given that a nominal

closed-loop feedback system is stable, does the feedback system remain

stable when subjected to perturbations and how large can those perturba-

tions be? It turned out, through invocation of the Nyquist Criterion,

that the size of the allowable perturbations was related to the "nearness

to singularity" of the return difference matrix I + G(j6J). Closed-loop

stability was said to be "robust" if G could tolerate considerable

perturbation before I + G became singular.
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We shall now indulge in a modicum of abstraction and attempt to

formalize the notion of robustness. The definition will employ some

jargon from algebraic geometry and will be applicable to a variety of
i

situations. While no deep results from algebraic geometry need be em-

ployed, the exercise of formulating a precise definition is a useful one

for clarifying one's thinking.

Let p e MN be a vector of parameters from some problem being studied

and suppose we are interested in some property R of this data. The vector

a
p may consist of the elements of various matrices, for example. If II

is true at some nominal parameter set p 0 we are frequently concerned with

whether n' remains true in a "neighborhood" of p
0

For example, p0 may be the elements (all' ..., 
aln' a21 .... ' ann)

1	 '
of a nonsingular nxn matrix A 0 and we are interested in the nonsingularity

of nearby matrices. We shall proceed to formalize the often-heard statement

that "almost all nxn matrices are nonsingular". First, the jargon:

Definition 1: A variety V = (p aIRN:
	 pN) 

= 0, i = 1,..., k}

where$ (x	 x ) e gt [x	 ] are polynomials.i 1<.... 
N	

1,..., xN	p Y

V is proper if V # IltN and nontrivial if V # ¢.

Definition 2: A property is a function II: IR M + {0, 1}. The property

II holds if 11 (p) = 1 and fails if H(p) = 0.

Definition 3: If V is a proper variety, t) is generic relative to V

provided II(p) = 0 only if p e V. A property iT is

generic if such a V exists.

Our discussion to this point is purely algebraic.	 Now let us intro-
0

duce a topology on IRN , say the topology induced by some vector norm j^ • ^^.	
if

r-.. .	 y. •y 'n .. ..-	 .`e<,:e'...,.	 ..	 Ksi,<+^a'YA ^:we4waLiGrCLfl^&^KV.A^^..._. .............^ w...	 ..	 _.
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Furthermore, let V be any nontrivial, pro per variety. Then

the following topological definition.

(E

1	 '

s

a

Definition 4: The property R is well-posed at p e Vc (the complement of

V) if N also holds in a sufficiently small neighborhood

of P.

Lemma 1: The set S of points where a generic property is well-posed

is open and dense. Moreover, the Lebesgue measure of Sc

is zero.

The proof of Lemma 1 is routine and is omitted. It is easy to see

that a point p where a generic property holds is well-posed but that the

converse is not necessarily true.

We now have sufficient framework to make a formal definition of

robustness.

Definition 5: Given a point p with generic property H (generic with

respect to some proper variety V) well-posed at p, let

d=min 11p -v^^
veV

We say H is , robust at p if d is "large"

The number d is frequently difficult to compute or estimate. When

it can be determined, it gives valuable information about how much

perturbation or uncertainty can be tolerated at p. For the situation

of special interest in this paper,Bxample 2 below, we shall see that

d can be explicitly calculated, at least theoretically. We now illustrate

the above concepts with two examples.

F,

h

e

r.A„
c
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Example 1

This example is chosen from TPonham (2) who uses the concepts of

genericity and well-posedness in nontrivial ways for a variety of control-

theoretic problems. In this trivial exam ple, we seek solutions of the

system of linear equ ,̂ tions

Ax=b
i
j	 where A e ZPM (i.e., A is an mxn matrix with real coefficients) and b e M7.

j	 our parameter vector is p where

9
TNp = (all ,..., alp,..., amn; bit .... bm) 6.M , N = mn + m

(T denotes transpose). II is the property of the equation having a solution

which is equivalent, of course, to the statements that b e IM A or
1 2	 b^^

rk(A, b] = rk A. For example, if A r \
2 4/

 and b 
=(b 

then
2

0 if b2 ¢ 2b1

1 if b2 = 2b1

It is then easy to show the following: (see (21)

1. ]] is generic if and only if m < n.

2. ]i is well-posed at p if and only if rk A = M.

Example 2

This example is similar to Example 1 in the special case m = n. We

are given a nonsingular matrix A e M7 
xn 

and we are concerned with the

nearness of A to singularity. Identifying A with p T = (all " .. , aln?

a
21" ' .. , ann) we define the property ]] by
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x

^0 if p represents a singular matrix
II(p)

1 if p represents a nonsingular matrix
i

Then it is easy to see that II is a generic property and well -posed where

it holds. This is the precise statement that "almost all nxn matrices
R

are nonsingular". Formally writing down the determinant of A as a poly-

nomial in all ,..., aan defines the necessary variety V. It turns out,

in a theorem attributed by Kahan [3) to Gastinel, that the distance d

from a point p e Vc to V can be explicitly determined.

Theorem 1: A nonsingular matrix A differs from a singular matrix by no

more in norm than 1	 i.e., given A,71 II

	

_ll	 = min{ II E II : A + E is singular} .

IIA	 II

Thus d= _1	and we might say that A is robust with respect to

IIA 1II
a	 invertibility if d is "large". To avoid certain scaling difficulties,

I	 it may be more desirable to work with a relative measure of distance,

drel, defined by

	

ref 	 d 	 1	 _ 1a	
ILA II	 II A II • IIA 1II	

K(A)

The quantity IC(A) is recognizable as the condition number of A with

respect to inversion. of course, all the above quantities depend on the

particular matrix norm used. To exhibit the specific dependence on the

norm II • IIc we shall append a subscript 110". For example,

a.



xr

d	 I- 1

q

The minimizing E in Theorem 1 can be explicitly constructed for a number

of standard matrix norms. For example;

1.
II
A 112	 (amax(ATA))1/2

Let A have singular value decomposition A = USVT where U, V 63m'

are orthogonal and S - diag{ol,..., an }. The oi l s, al >...> an > 0,

are the singular values of A. The minimizing E is given by E = URVT

where R - diag {0 .... , 0, -on }. Then

on
_ 1

IW11I

and A + E is singular. The singular direction, i.e., a nonzero

vector z such that (A + E)z = 0, is given by the nth column of

V.

nn
2. II A 11„ = max { E J a .j}, n = {1,2,..., n} .

ien j=1 i^

Suppose A 1 = [aij J and 11 A-1 11 = I jakj I for k 6 n. Then the

j=1
minimizing E is a matrix all of whose elements are 0 except

for the kth column which consists of the elements

sgn 
akl	

sgn 
akn

IIA lllm ,...,
	

IIA 1II^
0

(
kn

kl
In fact, letting z = sgn 	 and u = 1*1 11, with the only

 
0

i)
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nonzero component of u being in thek^ row, we have E - -zuT

and Clearly IIE II i 	 Now, ( I +EA 1)z = (1 - uTA 1z)z- 0
1I 	 k

since the ka element of ti 1z is 
j1 

lakj l - 11^-1 Il m so that uTA 
1z 1.

-1
Hence A + E - (I + EA 1 ) A is singular. Moreover, the singular direction is

given by A lz 
since (A+E)A 1z - 0.

n
3.	 11 All- max(Z l a I).

jen i-1 ij

The results for this norm are analogous to llIl w and can be derived

directly or by noticing that 11 A il l - 11 AT IL . For completeness we
n

note that if 11 A ill 1 laik I for k e n and
i=1

alk
	 0

z - sgn	 U -	 1/ 11 -1 11

ank
	

0

then the minimizing E is given by E _ -uzT.

We shall see in Section 3 how the results in Example 2 can be applied

in studying robustness of stability of linear systems.



2. THE LINEAR SYSTEMS SETTING

In this section we shall provide a brief introduction to both the

linear time-invariant systems setting and to the fundamental notion

of feedback. This will serve a two-fold purpose: first, to set the stage

for the basic stability results and second, to introduce the jargon and

notation, especially for noa-engineers. This material is standard and

can be found in any of a number of standard textbooks on control systems.

We shall consider :modelling physical systems by models which take

the form of a system of linear constant-coefficient ordinary differential

equations

x(t) = Ax(t) + BUM)	 (1)

y(t) = Cx(t)	 (2)

The vector x is an n-vector of states, u is an m-vector of inputs or

controls, and y is an r-vector of outputs or observed variables.

Starting from the initial condition x(0) the solution of (1) is

well-known to be

x(t) = etAx(0) +e (t-T)ABU(T)dT, t > 0	 (3)
0

so that the output is given by

y(t) = CetAx (0) A.	
Ce(t - T)A

BU (T)dT, t > 0	 (4)
0

where etA is the matrix exponential defined, but not generally

computed, by

etA = G t 
k 
A 
k

v
k=0 k!

h'

^,	 t ac	 .,
s
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The matrix CetAB is called the impulse response matrix.

Denoting one-sided) Laplace transforms b ug	 y peer case letters, take

Laplace transforms in (4) to get

Y(s) - CX(s) - C(aI-A) -1X(0) + C(sI-A) -1BV(a)	 (5)

The matrix G(s): = C(sI - A) -1B is called the transfer matrix. Notice

that G(s) is the Laplace transform of the impulse response matrix.

As will bi seen in the sequel, it is of interest to study the

response of the above linear system to sinusoidal inputs of the form

U (t) = e
JGJtV,	 t > 0
	 (6)

where v is a constant m-vector, w is the frequency of the sinusoidal

input, and j = VVI'. The response of (1) to this input can then be

shown to be of the form

x(t) - etAa + (jwI - A) -1BvejWt ,	 t > 0	 (7)

where a is a constant n-vector depending on initial conditions. Now,

in the case where A is stable (i.e., its spectrum lies in the left-

half of the complex plane) the quantity e tAa goes to zero as t approaches

+w. The resulting output

y(t) = C(jWI - A)-1BrejWt
	

(B)

is called the steady-state frequency response and the matrix

G(jW): = C ( j wI - A) -1B ,	 (9)

which turns out to be the transfer function evaluated at s = jw, is

called the frequency response matrix.

a

r
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Turning now to the case of a real signal given by

uk (t) = vksin (wt + V, t > 0	 (10)

ui (t) . 0,	 1 m 1,,,,, m; i ¢ k,

we have steady-state frequency response of the 2th output given by

YZ (t) - IGRk(jw)Ivk sin(wt + 4k + ^Ik) 	 (11)

where yzk - arg(GRk(jw)).

Aside from its obvious importance in the above analysis, the

frequency response matrix is important for two reasons:

1. Sinusoidal signals are readily available as test signals

for a linear system so G(jw) can be ex perimentally determined.

2. Various plots or graphs associated with G(jw) can be used to

analyze control systems, for example, with respect to stability.

Plots such as those associated with the names of Bode, Nichols,

x

	

	 and Nyquist are essentially different ways of graphically

representing IG2k(jw)I and arg(GQk (jw)) as functions of

w. These plots are used extensively in the analysis of

single-input single-output control systems where the robust-

ness of stability, e.g., the amount of gain and phase margin

available, is checked essentially visually. The appropriate

techniques in the multiple-input multiple-output case are

still being investigated and part of the motivation for the

research in [1] and this paper is directed towards this end.
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Turning now to the notion of feedback whose essential idea is to

allow for stability of a system in the face of uncertainty (noise,

model error, etc.), the diagram below illustrates the basic (unity)

feedback control system:

Fig. 1. Basic Feedback Control system

Here u is a reference input, y is the output, and e = u - _y is the error

or difference between the reference input and the output which we wish

to be,ideally, zero. The plant, compensators, actuators, and sensors

are all represented by G. There are much more elaborate and detailed

feedback structures than that described above and the structure can be

studied in a considerably more general function-space setting (see [4),

for example) than the simple linear causal time-invariant setting we

shall consider. However, the simple system is adequate to exhibit most

of the key ideas in this paper. Now, in this system we have

e=u - y=u - Ge	 (12)

or,

(I+G)e = u	 (13)

's

I^
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The quantity I + G is called the return difference matrix. As in (1),

the matrix G(jm) then provides sufficient data, via the Nyquist criterion,

to test for stability of the closed-loop system. Henceforth, we shall

assume that our nominal feedback system above is stable in which case

I+ G is invertible. Then from (13) we have

e	 (I+G) -1u	 (14)

so that

y Ge m G(I+G) -1u	 (15)

in (15), the quantity G(s)(I + G(s))
-1
 is called the closed-loop transfer

matrix while G(jW)(I + G(JW)) -1 is called the closed-loop frequency

response matrix. We then pose the basic stability question:

Does the nominal feedback system remain stable 'dhe)7. subjected

to perturbations and how large can those perturbations be?

Let us observe at this point that there is nothing sacred about

linearity in the above discussion and more general nonlinear treat-

ments can be found in (4) and [5), for example. The question of "near-

ness to singularity" of (1+ G), even in the nonlinear case, is naturally

intimately related to a notion of condition number for nonlinear

equations. The interested reader could readily adapt the ideas of

Rheinboldt [6) to the particular application at hand here.

4

I
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3. BASIC STABILITY RESULTS AND RELATED TOPICS

a. ADDITIVE AND MULTIPLICATIVE PERTURBATIONS

We shall consider two fundamental types of perturbations in the

basic feedback system of Fig. 1. Throughout this section, 11 . 11 will

denote any matrix norm with H ill - 1. The first case to be considered

is the case of additive perturbations to G, pictured below:

Fig. 2. Additive Perturbations

In other words, the nominal G is perturbed to G + L. Under the assumptions

that both the nominal closed-loop system and the perturbation L are

stable it can be seen from the Nyquist criterion and the identity

I + G + L °_ (I+G) [I + (I+G) -1L)	 (16)

that the perturbed closed-loop system remains stable if

II(I+G(jW)) -1L(j(0) II < 1,	 W > 0	 (17)

A weaker condition than (17) but one which directly exposes L is
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IIL(jW) II	 1	
W > 0 (18)

II(x +c(iW)> -111

The second case to be considered is that of multiplicative perturba-

tions:

u+	 a	 ^+ L	 G	 Y

i

Fig. 3.	 Multiplicative Perturbations
i

In this case, the nominal G is perturbed to G(I+ L) . 	 under the assumptions
-s

that both the nominal closed-loop system and the perturbation L are
l

stable it can be shown from the Nyquist criterion and the identity

I + G(I+L)	 =	 ( I+G)	 [I +	 (I + G-1)-1L] ( 19)
Is

1fq

that the perturbed closed-loop system remains stable if

II(I + G-1 (jW)) -1L(jW) II	 < 1,	 W > 0 (20)

(assuming G 1 exists).	 Again, a weaker condition than (20) but one r`

which directly exposes L is

IiL (jW) II	 <	 1
-1	

-1^^	

W > 0

II(I+G	 (jW))
(21)

Y.

,..._	 .a 1	 tia	 Vo Yi..u.= \ai mdiu:iu;+^lS^..}5al,11^^^° 	 •.
.:X
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Remark 1: As we noted in Section 1, the above inequalities are tight,

i.e., the < cannot be replaced with < .

Remark 2: Where convenient we shall henceforth drop the "jw" arguments.

Remark 3: It must be stressed that the results based on

II(I + G*1 ) -l ll II L II < 1	 (18), (21)

are weaker than those based on

11(ItG±1 ) -1L II < 1	 (17),'(20)

since

11(1 +G±1 ) -1L11 <_ 11( I +GL1 ) -1 11 - II L II •	 (22)

For example, if L c(I + G'1) for some constant c, Icl < 1, the

differences in the bounds are obvious. In (18), (21) we have

11(u+1G±l ) -1
11 • IIL11= IcI•K(I +G±l)

while in (17), (20) we have

11(I +Gtl)-1L I1 = Icl

and it is possible to have

Icl << Icl • K(I+G ]')

However, for random perturbations L, (22) is often approximately an

equality. To see this, note that a random (dense) L will almost surely

be invertible; recall Example 2. It is then easy to show that

1(I +G±1 ) -11 < 11(I+G ±1 ) -11,11 < 11(3:+G	 11 • 11 L 11
IIL l ll
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Again, since L is random, it will almost surely be well-conditioned

(w. r. t, inversion) so that IIL -1 II TL71 . Hence,

II(I+G`I ) -1L11 z II(I+G`l)-lII-IILII

A related aspect, also worth noting, follows from the inequalities

II(Z+G'-1 ) -1 II • IIL II < II(I+G+1)-1L II < 11(1+G
±1

 ) -I II - JI L II

If (I +G il )  is reasonably well-conditioned (K(I + G rl) near 1) , the

majorization (22) will not be a bad overestimate.

Remark 4: By our discussion in Section 1, the appropriate measure of

stability robustness is

d = min	 1
W>O II (I + Gfl dw)) -1 1I

and in the sequel we shall consider methods of efficiently plotting

1+	 as a function of W. This quantity is familiar from
II(I+G 1)-1II

classical sensitivity analysis where it is shown, in the single-input

single-output case, that the change in the output of a closed-loop

system, due to (additive) perturbations in G (scalar), is reduced by

a factor of 1 + G compared with the open-loop effect.

Remark 5: So far we have required nothing of our norm other than

I1I11 = I. Of course, a frequently occurring norm in much of the

analysis of linear systems is the s pectral norm II • 11,. In that case

1
1
C

^i^	 '.:y..,. ..Y^.	 .w,..,,...r,.^.::^ti.a^ae_<..b3^ifsm^'1A^3^'^^,L.d^ 4 'Kcu2,/]:^.u^ _., .._.

(23)

x
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L
	

^I(I+G 1)-lll 
is the smallest singular value of (1+ Gil ). Let

i

d (w) _	 +1	
(2 4)

.
q	 11(I+G-1(jw))-l1^q 

We are interested in plotting dq (w) versus w for large numbers of

w's. We shall see in the sequel that determining d2 (w) can be

somewhat more expensive to determine than, say d1 (w) or d. (w). More-

over, note that

	

/M_ IIA112 < II A I[l < 3m IIA112 	(25)

and

	

/_M IIA112 < 11AIL < 3m 11A112 	 (26)

for A e Tom. Since we are usually most interested in order-of-magnitude

estimates of dq (w), d2 (w) will lie in a strip sufficiently close to

d1 (w), for example, to give the same qualitative information. The

number m which is the number of inputs/outputs in the system is typically

no more than about 10 and is frequently much less

b. RELATIONSHIPS BETWEEN ADDITIVE AND MULTIPLICATIVE PERTURBATIONS

The following theorem relates additive and multiplicative perturba-

tions. Again, the "jw's" will be omitted for convenience and all

relations will be assumed to hold for all w > 0.

n

t

r

^^^ _.n	 ...^	 ^^^^	 ^v'.0	 'rM.:.+a: ...h •^'.\YC+TY_wvS^:s^C^ 	 _	 .. .
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111(1+G 1 )
-1

II - II(I+G)-1 11 f < 1

Proof: From the identity
l(
4

Y	 _

t (I+G	 + (I+G) -1 = I

we have

fII(I+G 1)_l II - II(I+G) -i lll < 11(I +el ) -1  + (I+G) -1 11 ° 11 1 11 ° 1 -

We now get immediately the following useful corollary'

Corollary 1: Assuming that both the nominal closed-loop feedback

system of Fig. 1 and the perturbation L are stable then the perturbed

system is stable under:
i

(a) additive perturbations if

1II L II < 
1 + II ( I+G

_ 
1) -111	

czs)

(b) multiplicative perturbations if

11 L 11 < —	 1	 (29)

1 + 11(I+G) -ilI

Proof: Follows immediately from Theorem 2 noting that

1 + lI(I + c+
' ) -1 1I 	 II(x +c*1) -111

c. SPECIAL RESULTS FOR THE SPECTRAL NORM

In this subsection we shall present score results related to those

in subsections a, and b.. but specialized to the 11 • lI2 - norm. For

'a
F

r,
Y

i; _a	 ... ^...... r.w.. .3^4mv.	 .a : ^ ,u',.r4.n4,sir+isvl:n431Yku^•ASfSFA1M^1^̂.:^..s^^t31^. _. 	 _	 -.-

(27)

j



-19-

a matrix H e Ste° with singular values a 1 (H) > ...> am (H) > 0 we note

that II H 112 = al (H) . If H is nonsingular, IIH 1 11 2 = Ql(H) > 0. In the
M

II • 112 - norm (28) becomes

1
i

i

i
i

am (I+G-1
 )

a (L) <
1	 1 + am(I+G -1 )

while (29) becomes

a (I+G)
CT (L) < 1 +mam(I+G)

We shall make great use in the sequel of the following result

of Fan [7] .

Theorem 3: Let A,B a T
nxn

. Then

(a) Qi+ j-1(A+B) < a  (A) + G  (B) i 	 i > 1,	 j > 1

(b) ai+j-1 (AB) < ai (A)aj (B);	 i > 1,	 j > 1

Part (b) of Theorem 3 can be used to relate a m (I+G) and Crm (I+G-1).

	

Theorem 4: (a)	 1,	 am(I+G 1 ) < am (I+G) < II G II20m(I +G 1)

I^	 II2

	(b)	
II i	

am(I+G) < am (I+G-1 ) < IIG 1 II, am (I+G)

2

Proof: Follows immediately from Theorem 3 using

I+G-1  G 1 (I+G) and I + G =G(I+6 1 ) .

r
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For the rest of this subsection we shall let H denote either

I + G or I + G 
1 
according to whether additive or multiplicative

perturbations are appropriate. The next theorem will show how the

singular values of H +, L can be bounded in terms of 
II L

I1
2 and the

singular values of H.

Theorem 5: Suppose Gk (H) > ak > 0 for some k, 1 < k < m, and

II L 112 10. Suppose further that 6 < ak , Then:

(a) ak (I + H-1 L)  > 1 - a
k

(b) ak (H + L) > ak

(Note: If k # m, H + L is not necessarily invertible if S is too large.)

Proof: (a) Use I = I + H 1L - H-1L and A C I + H 1L, B -H-1L, i = k,

j - m-k + 1 in Theorem 3(a) to get

aM (1) < ak (I + H-1 L)  + Qm-k+l(H-1 L)

Thus Qk (I + H 1L) > 1 - 0m-k+l(H-1L)

1 - II L 112 * am-k+l (H 1) by Theorem 3(b)

= 1 - II L 16ak (H)

'	 >1-ak

(b) Use H= H+ L- L and A= H+ L, B -L, i k, j= 1

in Theorem 3(a) to get

ak (H+ L) > ak (H) - II L 112 > ak
M1,	 ^

1
t
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i The case k - m is of special interest in Theorem 5 as it bears

directly on our two basic inequalities (18) and (21) of the form

II L 112 <	 _i
IIH	 II2

which are sufficient to guarantee stability of a perturbed closed-loop
w

system. Specifically, if-1112 H 1II 2 < a— and II L II < 6 with 0 < 	 < a,

then H +L is invertible and 11(H+L) -1 II
 < a1a or a. (H+L) > a - a.

Note that Theorem 5 was expressed in terms of isolating IILII 2 . By

analogy with the inequalities (17) and (20) we can also have the fol-

lowing stronger, but perhaps less useful, theorem.

Theorem 6: Suppose Q
m-k+1 

(H 1L) < 1 - d where o < d < 1 and 1 < k < m.— 

Then:

(a) vk (I + H 1L) > d

(b) a (H + L) >
k	

IIH 1112

Proof: -(a) From the proof of Theorem 5 we have

Qk (I + H 1L) > 1 - Qm-i:+1(H 1L) > d

(b) From I + H 1L 2 H-1 (H+  L) and Theorem 3(b) we have

ak(I + H 1L) < ak(H + L) 	 IIH -1 II2

whence Q (H+ L) >	 dk	
IIH 1112

__	
l
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d. SPECIAL RESULTS WM G(s) - C(SI - A)1B

In this subsection we shall make use of the fact that the frequency

response matrix is of the form

G(jW) - C(jWI - A)-lB

Let us further define

F(jW) - C(jWI - A + BC ) -1B	 (30)

Recall the Sherman-Morrison -Woodburl formula:

(W + XYZ) -1 5 W 1 - W 
1X (Y l + 2W lX) -lzW 1

assuming the indicated inverses exist. Then it is easy to verify that

(I + G(jW)) -1 
°_ I - F QW)	 (31)

and, from (27),

(I + G-
1
 (Jw)) -1  = FOW)	 (32)

Thus our results in the last section (for example, Theorems 4, 5,

and 6) can all be cast in terms of F by noting that

ak (I + G) - a
	 1 (I'F)	 (33)
m-k+l

and

ak(I+G 1 ) = a	
1 

(F)	 (34)
m-k+1

Moreover,

II(I+G) -l II	 III	 FII	 (35)



and

i	 !Ia +G-1
 ) -1 11  - II F II

for any of the norms we have been considering (in particular, k - m in

(33) and (34)). Use of (31) and (32) results in an apparent savings

in the number of linear systems to be solved (i.e., number of inversions)

and we shall exploit this fact in the next section.

r

1	 ^
r-

t
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i

4. COMPUTATIONAL PROBLEMS

a. COMPUTATION OF FREQUENCY RESPONSE MATRICES

As we have seen above, an object of considerable interest in studying

the robustness of stability of linear systems is a graph of	 I
II(I + Gti (jw)) lII

as a function of w. When G(jw) C(jwi - A) -1B we saw that II(I + G(jw))- 1II

III- F(.jw)II and II(I +c l OW) ) -1 II ' I!F (jw) II where FQW) . C(jws - A + BC) -1B.

Thus, regardless of the norm used, a quantity of the form

C(jw1 - H) -1B	 (37)

must first be computed. tie shall assume throughout this and the next sub-

section that. (i) B e e XM ' C e:R xn , H e 
exn 

are given

(ii) n > m

(iii)(37) is to be evaluated for a large number, N, of

values of w; typically N >> n.

Rather than concentrate on exact operation counts, which maybe fairly

meaningless anyway, we shall give only order-of-magnitude estimates.

it will be seen that the bulk of the computational load rests on evalu-

ating matrices of the form (37) and so we shall focus initially on

that problem.

If A e 
nxn

is dense, the most efficient evaluation of C(jwI - A)-1B

by an LU factorization of A, solution of m triangular systems to get

(JW1 - A ) -1B, and finally a matrix multiplication, re quires approximately

3n 3 + 2 mn 2 + m 
2 
n multiplications (and a like number of additions; we

shall henceforth count only multiplications). This figure, when multiplied

by N, represents a rather large amount of computation.

Y
r
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1,
If A is initially transformed, however, the computational burden

can be reduced quite considerably. If T is a similarity transformation

on A we have

CQWI - A) -1B 5 CT(jwI - T
-1 

AT)_
l
 T1B

Let us define

H=T1AT

and agree, for convenience to still label CT, T 
1B 

the transformed C and

B matrices, respectively, as C, B respectively. we now have the problem

of evaluating

C(JWI H)-1B

where H may now be in such a form that (jwL- H)
-1
 can be computed in

less than 0(n 3 ) operations. For example, A can always be reduced to

upper Hessenberg form by (stabilized) elementary transformations (In 3

multiplications) or by orthogonal transformations ( 3 n3 multiplications).

These transformations are very stable numerically and, while 0(n 3 ), are

performed only once at the beginning of the calculations. The resulting

linear system to be solved - for N different values of w — now has an

upper Hessenberg coefficient matrix and can be solved in approximately

2 mn2 multiplications. Moreover, Hessenberg systems can be solved very
accurately with the growth factor in Gaussian elimination bounded above

by nr see [8]. Computing CQWI - H) -1B still requires an additional

m 
2 n multiplications. Neglecting the initial transformation and deter-

mination of CT and T
-1 

B,  the Hessenberg method requires approximately

k.

i
e
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2 mn2 + mZa multiplications (for each value of w), a considerable savings

over the O (n3 ) algorithm if n >> m.

Of course, other transformations T are possible. One possibility is

to reduce A to upper triangular (Schur) form by means of orthogonal simi-

larities. This is considerably more expensive than reduction to upper

Hessenberg but, again, need only be done once at the beginning. How-

ever, the resulting linear system to be solved at each step is upper

triangular and so still requires O(mn 2 ) multiplications. Because of

potential difficulties with multiple eigenvalues of A there seems to be

little real advantage gained by this procedure. Substantial savings

could be gained though if the eigenstructurw of A were such that it

was diagonalizable by a reliably computable T. Since this involves

consideration of the essentially o pen numerical problems associated with

computing invariant subspaces we shall not pursue the details here.

But assuming such a transformation were possible, C (jwI - D) -1B with

D diagonal, could be computed with approximately nn + m 
2 n multiplications

for each value of W. Attractive as this appears, the potential for severe

ill-conditioning of the eigenproblem associated with A render this latter

method unreliable as a general- purpose approach. we shall subsequently

consider only the Hessenberg method.

The analysis above has been done under the assumption that complex

arithmetic was performed. We now outline how G = C(jwI - H)_ l B might

be determined using only real arithmetic. The matrix H is assumed to

be in upper Hessenberg form. We wish to solve first

(jwI - H)z	 B
	

(38)

i	 i
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Then

G r CZ .

Suppose 2 X + jY where X, Y e exm . Upon equating real and imaginary

parts in (38) we get the following order 2n real system to determine

X and Y:

-H	 -WI	 X

(0)

(39)

s

	

	 Thus X = HY and Y -W(WZI + HZ ) -1B. The matrix (WZ I + H- ) will be

invertible if (J(OI - H) is invertible. Note that (W2 1 + H2 ) is no longer
P

upper Hessenberg but is almost in the sense of having two rather than one

nonzero subdiagonal. Its shape is wholly typified for n = 5 by the

matrix

X X X X X

X X X X X

X X X X X

O X X X X

O O x x x

Linear systems involving matrices of this type can be solved using

j,

	

	 approximately n2 multiplications. We summarize the Hessenberg method

using _real arithmetic:

(i) Reduce A to upper Hessenberg form H, transform B and C,

and compute H2 ; this step is done only once.

X
r

^! ^'". .r	 ,. s...	 1 :. ;'.,., .cew%c.:w...:.s +L..aayi(.c--s.y4o-^s1w,pM1^C4^y1"'Y— 
3i7 rt^H/•a)



(ii) solve ( (u2 1 + H2 ) Y	 -ca for Y.
r;

r

	 Compute X = i HY .

(iv) Compute G - (CX) + j (CY)

t

Step (ii) requires approximately mn 2 multiplications, step (iii) requires

approximately 
2 

mn2 , and step (iii) approximately :n2u. The tctal number

of multiplications is approximately 2 mn 2 + m2n.

Storage requirements for the Hessenberg method with real arithmetic

are approximately double those for complex arithmetic.

b. COMPUTATION OF ROBUSTNESS MEASURES

We have seen above that quantities of the form (37) can be reliably

evaluated in O(mn2) operations. There then remains the problem of

determining (35) or (36).

Case 1:	 112

For (35), the singular value decomposition (SVD) of I + G(jm) can

be computed for each value of (u. Each SVD typically requires approximately

6m3 multiplications. The smallest singular value is then the quantity of

interest. For (36), inversion of G can be avoided by finding the SVD

of F(jm), again in approximately 6m 3 multiplications. The inverse of

the largest singular value of F is then the quantity of interest.

Case 2:	 ^^	 ^^l or

Use of either of these norms in (35) or (36) involves negligible

computation as compared to Case 1, namely about m2 additions and absolute

k"t	 r<

ie	 r

. ,-s ^. ,., -...y,....—.^. c_:rase+6^cu^^1i$•oa3.:+1a^'rr+",E^y.
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values and m-1 arithmetic comparisons.

In both cases, the additional work required is usually small compared

with 0 (mn2 ) especially if n >> m. However, if m is large relative to

n, significant savings can be realized in using I1 • Ilior 11- IL rather than

II • 112- In fact, using our previous approximate operation counts for

the Hessenberg method and setting n = km,• we have

work per value of W using ^I•II2	 2
P	

^ k +2k+12

work per value of W using II • II I or II • IL	 k2 + 2k

Note though that p = k2 2 2k + 24 if singular directions are also com-
k + 2k

puted.

In the event A (or A - BC) can be successfully diagonalized as

mentioned in section 4.a. the potential savings in avoiding 11 II2 are

somewhat greater. In fact, we then have

k+6
P k

(or p = k= if singular directions are also computed).

The above comparisons are only approximate and should in no way

be construed as definitive statements. The purpose of this section is

to merely introduce certain aspects of the numerical computations and

suggest further avenues of exploration. A great deal of numerical

experimentation remains to be done. Reliable software such as LINPACK

[9] for linear systems will be of great benefit in this research.

i
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S. CONCLUSIONS
l

lie began this paper with an attempt at a "formal" definition of

robustness. We then applied the definition to the problem of robustness

of stability of linear systems as discussed in [1]. The cases of both

additive and multiplicative perturbations were discussed and a number of

relationships between the two cases were given. Finally, a number of

computational aspects of the theory were discussed including a proposed

new method for evaluating general transfer or fre quency response matrices.

The new method is numerically stable and efficient, requiring only

0(mn2 ) operations to update for new values of the frequency parameter

rather than O(n3)

A number of interesting research areas suggest themselves in this

work. One such area is that of constrained perturbations. For example,

in our basic problem we were concerned with the nearness to singularity

of a nonsingular matrix A E exa . If the admissible perturbations E

are somehow constrained for one reason or another, for example E upper

triangular, the usual bound on 11E1I for which A + E is singular but E

is "dense" may be overly pessimistic. Related to this is the fact that

our bounds were derived for the "worst case". The size of perturbations

allowed in a linear system to ensure continued closed-loop stability may

very well be larger than we have derived if inputs to the system are

constrained in certain directions.

We have concentrated in this paper on the analysis of linear control

systems. There are many interesting — and difficult — synthesis problems,

however. For example, can A, B, C be chosen to assign certain singular

2^ values of I + G -1? What is the effect of changes in B or C on the

Y



behavior of .I + 
Gtl

? Can a matrix K be determined so that I + (G4tl

9
has certain singular values?

On the computational side, more research needs to be done on updating

parametric problems.	 That is, suppose we have a matrix (say, G(jw))

which depends "in a rank m way" on a parameter W. When co changes how

can various quantities be updated efficiently?

Finally, as mentioned in Section 4.b., a great deal of numerical

experimentation is necessary to get a qualitative feel for the numbers

in determining robustness neasures.
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